1. 伯乐范文网 > 知识库 >

水在多少度密度最大,水在多少度的时候密度最大?

本文目录索引

1,水在多少度的时候密度最大?

水在摄氏4度时密度最大.
绝大多数物质有热胀冷缩的现象,温度越低体积越小,密度越大而水在4℃时体积最小,密度最大,为1kg·m?3(即1g·cm?3。这一现象也可以用水的缔合作用加以解释。接近沸点的水,主要是以简单分子的状态存在的。冷却时一方面由于温度降低,分子热运动减小,使水分子间的距离缩小,另一方面,由于温度降低,水的缔合度增大,(H2O)2缔合分子增多,分子间排列较紧密,这两个因素都使水的密度增大,温度降低到4.0℃时(严格讲是3.98℃),水有最大的密度,最小的体积。温度继续降低时,出现较多的(H2O)3及具有冰的结构的较大的缔合分子,它们的结构较疏松,所以4℃以下,水的密度随温度降低反而减小,体积则增大。到冰点时,全部分子缔合成一个巨大的、具有较大空隙的缔合分子。水的这一性质对水生动植物的生存有着重要的意义。严冬季节,冰封江、湖、河面的时候,由于冰比水轻(0℃时冰的密度为0.9168g·cm?3而水的密度为0.9999g·cm?3,它浮在水面上,使下面水层不易冷却,有利于水生动植物的生存。
300多年前,人类就已知道水在摄氏4度时密度最大这一现象。虽然这一现象仅仅是由于水的分子结构造成的,但对于水的这种特性,人们至今仍不能作出科学的解释。
日本物质材料研究机构物质研究所研究员三岛修和铃木芳治通过实验证实,在低温条件下两种非晶态冰之间存在不连续性转移。在低温情况下,低密度水和高密度水呈完全不同的形态。这项研究不仅首次解释了水在摄氏4度时密度最大的现象,而且在生态系统、水溶液系统等与水有关的领域有广泛的研究与应用价值。该成果发表在最新一期的《自然》杂志上。
多年来,科学家通过理论计算与实验,一直在进行水的非晶态多样性研究。水通常在摄氏零度时结冰。但水在摄氏零度以下时也可保持液体状态,称作过冷却水。当过冷却水到达临界点以下时就会分离出两种状态,既低密度水和高密度水。与此相对应,也存在低密度和高密度两种非晶态冰。由于水在低温时易于结冰,也由于没有非晶态冰之间互相转移的现存理论,水的非晶态多样性学说存在很多争论。其中之一就是两种密度的非晶态水是否会发生连续转移。
日本科学家的这项研究,观察了高密度非晶态冰(HDA)向低密度非晶态冰(
LDA)变化的过程。发现
H
DA在零下158摄氏度以下时整体均一膨胀,在零下158摄氏度时随着不均一的体积变化迅速向
L
DA转移。在转移过程中,出现两种成分共存状态,随着时间推移,
H
DA和LDA逐渐分离。研究证实,低温下两种水之间的转移是不连续的。
科学家认为,这项研究成果是揭开水领域各种问题的重大突破,将对今后过冷却水等研究产生重大影响,同时将带动对同温层中的云的研究及在冰点下活动的动植物细胞内存在的过冷却水的研究。如果今后能够控制这两种水的临界点,就可以自由控制水的结晶,对人类控制地球环境和开发生物冷却保存技术极有价值。

水在多少度的时候密度最大?

2,水的密度在什么时候最大

在4℃时水的密度最大!这里介绍一种比较常见的解释. 我们知道水的密度比冰的密度大,这是因为液态的水在凝固成冰的时候,分子间的相互作用力使分子按一定的规则排列,每个分子都被四个分子所包围,形成一个结晶四面体.这种排列方式是比较松散的,使得冰晶体中的分子间的平均距离大于液态水中的分子间的平均距离.在液态水中,分子的排列比较混乱,不像冰中的分子那样,按一定的规律排列.分子在液态中的运动虽然比在冰中更自由,但分子与分子间的平均距离比在冰中更小,所以水的密度比冰的密度大. 用X射线研究液态水的结构时,发现液态水中在一定程度上还保留着非常微小的冰的晶体.根据推算,在接近0它的水里,约包含着0.6%的这种微晶体.当温度逐渐升高时,这种微晶体逐渐地被破坏,由于这种微晶体具有较小的密度,所以微晶体的被破坏就会引起密度的增加.因此,在水中有两种使密度改变的效应:①使密度变小的效应.当温度升高的时候,水分子的热运动更剧烈了,分子间的距离变大了i因而引起密度的减小.②使密度变大的效应.当温度升高时,水中的微晶体逐渐地被破坏,引起密度的增大.在4C以上,水的温度升高时,第十种效应占优势,水的密度减小,体积增大.在4℃以下,水的温度升高时,第二种效应占优势,水的密度增大,体积减小.因此,水在4℃的时候,密度最大,这就是水的:密度反常变化的原因

3,水在常温下的密度多少?常温是多少度?

水在常温下的密度1.0*10³kg/m³,常温为25摄氏度。 水在0到4摄氏度时是冷张热缩,所以在0-4摄氏度时密度最大。夏天在23度左右 一般在22到24摄氏度。 密度是物质的一种特性,物理上把某种物质单位体积的质量叫做这种物质的密度。符号ρ读作rōu。用水举例,水的密度在4℃时为10^3千克/米^3或1克/立方厘米。 1.0×10^3kg/m^3,物理意义是:每立方米的水的质量是1000千克,密度通常用“ρ”表示。 密度的物理意义,是物质的一种特性,不随质量和体积的变化而变化,只随物态温度、压变化而变化。某种物质的质量和其体积的比值,即单位体积的某种物质的质量,叫作这种物质密度。 常温也叫一般温度或者室温,一般定义为25℃。在药品行业里,常温指10到30度,进口的也有指15到25度范围的。

4,水在什么温度时密度最大

水在4℃时密度最大,是由于水分子间有氢键缔合这样的特殊结构所决定的。根据近代X射线的研究,证明了冰具有四面体的晶体结构。这个四面体是通过氢键形成的,是一个敞开式的松弛结构,因为五个水分子不能把全部四面体的体积占完,在冰中氢键把这些四面体联系起来,成为一个整体。这种通过氢键形成的定向有序排列,空间利用率较小,约占34%、因此冰的密度较小。

水溶解时拆散了大量的氢键,使整体化为四面体集团和零星的较小的“水分子集团”(即由氢键缔合形成的一些缔合分子),故液态水已经不象冰那样完全是有序排列了,而是有一定程度的无序排列,即水分子间的距离不象冰中那样固定,H2O分子可以由一个四面体的微晶进入另一微晶中去。这样分子间的空隙减少,密度就增大了。

温度升高时,水分子的四面体集团不断被破坏,分子无序排列增多,使密度增大。但同时,分子间的热运动也增加了分子间的距离,使密度又减小。这两个矛盾的因素在4℃时达到平衡,因此,在4℃时水的密度最大。过了4℃后,分子的热运动使分子间的距离增大的因素,就占优势了,水的密度又开始减小。



生命获益于反常膨胀


我们知道,如果物体所受外界压力不变,大多数物体的体积都随温度的升高而增大,即热胀冷缩.与大多数物质的性质相反,在 0到4摄氏度的温度范围内,水的体积却随温度的升高而减小 ,这就是说,水在0到4摄氏度之间是冷涨热缩.水的这一反常性质,对江河湖泊中的动植物的生命有着重要的影响和意义.

当寒冷的冬天来临后,随着气温的降低,江河湖泊中的水温也随之下降.考虑某一湖泊,设其全部湖水处于某一温度如10摄氏度, 再设湖面上空气的温度为-10摄氏度,于是湖表面的水就会变冷, 比如说温度降到9摄氏度,这部分水因变冷而收缩, 其密度比底下较暖的水为大,因而沉入下面密度较小的水中,下面的 10摄氏度的水上升.冷水的下沉引起一个混合过程, 此过程一直持续到湖泊中的所有水冷却到4摄氏度为止.但是表面的水还要被冷空气继续冷却降温, 表面水的温度进一步降低,又比如降到3摄氏度,这部分水的体积不但不缩小反而膨胀,即表面水的密度比下面小,因而就浮在水面上不再下沉.对流和混合此时都停止了(当然扩散不会停止), 表面下的水基本上靠热传导散失内能.水是热的不良导体,这样散热是比较慢的.表面水的温度,先于下面的水降至0摄氏度、开始结冰. 冰的密度比水小,所以一直浮在水面上而不下沉.冰下面的水,从上到下温度为0摄氏度到4摄氏度,从上到下逐渐结冰.由于通过热传导而向上散热,比较慢,并且有地热由底下向上传导,因此冻结的速度是缓慢的.若湖泊的水很深,湖水是不会被冻透的,湖泊中生存的动植物就可以在靠近湖底的4摄氏度的水中安然过冬,免遭冻死的厄运.

如果水的性质也像其它大多数物质那样, 在全部温度范围内都是热胀冷缩的,那么温度较高的水不断升到水面,向空气散热, 湖泊中水的冻结就会从底部开始,从而容易导致湖泊中的水全部冻结.这样一来,就毁掉了湖泊中的一切经不起冻结的生命.
参考资料:北京北大附中联想远程教育有限公司

5,水的温度是多少时密度最大,为什么温度不同水的密度不同/?

水在4℃时密度最大,是由于水分子间有氢键缔合这样的特殊结构所决定的。根据近代X射线的研究,证明了冰具有四面体的晶体结构。这个四面体是通过氢键形成的,是一个敞开式的松弛结构,因为五个水分子不能把全部四面体的体积占完,在冰中氢键把这些四面体联系起来,成为一个整体。这种通过氢键形成的定向有序排列,空间利用率较小,约占34%、因此冰的密度较小。

水溶解时拆散了大量的氢键,使整体化为四面体集团和零星的较小的“水分子集团”(即由氢键缔合形成的一些缔合分子),故液态水已经不象冰那样完全是有序排列了,而是有一定程度的无序排列,即水分子间的距离不象冰中那样固定,H2O分子可以由一个四面体的微晶进入另一微晶中去。这样分子间的空隙减少,密度就增大了。

温度升高时,水分子的四面体集团不断被破坏,分子无序排列增多,使密度增大。但同时,分子间的热运动也增加了分子间的距离,使密度又减小。这两个矛盾的因素在4℃时达到平衡,因此,在4℃时水的密度最大。过了4℃后,分子的热运动使分子间的距离增大的因素,就占优势了,水的密度又开始减小。



生命获益于反常膨胀


我们知道,如果物体所受外界压力不变,大多数物体的体积都随温度的升高而增大,即热胀冷缩.与大多数物质的性质相反,在 0到4摄氏度的温度范围内,水的体积却随温度的升高而减小 ,这就是说,水在0到4摄氏度之间是冷涨热缩.水的这一反常性质,对江河湖泊中的动植物的生命有着重要的影响和意义.

当寒冷的冬天来临后,随着气温的降低,江河湖泊中的水温也随之下降.考虑某一湖泊,设其全部湖水处于某一温度如10摄氏度, 再设湖面上空气的温度为-10摄氏度,于是湖表面的水就会变冷, 比如说温度降到9摄氏度,这部分水因变冷而收缩, 其密度比底下较暖的水为大,因而沉入下面密度较小的水中,下面的 10摄氏度的水上升.冷水的下沉引起一个混合过程, 此过程一直持续到湖泊中的所有水冷却到4摄氏度为止.但是表面的水还要被冷空气继续冷却降温, 表面水的温度进一步降低,又比如降到3摄氏度,这部分水的体积不但不缩小反而膨胀,即表面水的密度比下面小,因而就浮在水面上不再下沉.对流和混合此时都停止了(当然扩散不会停止), 表面下的水基本上靠热传导散失内能.水是热的不良导体,这样散热是比较慢的.表面水的温度,先于下面的水降至0摄氏度、开始结冰. 冰的密度比水小,所以一直浮在水面上而不下沉.冰下面的水,从上到下温度为0摄氏度到4摄氏度,从上到下逐渐结冰.由于通过热传导而向上散热,比较慢,并且有地热由底下向上传导,因此冻结的速度是缓慢的.若湖泊的水很深,湖水是不会被冻透的,湖泊中生存的动植物就可以在靠近湖底的4摄氏度的水中安然过冬,免遭冻死的厄运.

如果水的性质也像其它大多数物质那样, 在全部温度范围内都是热胀冷缩的,那么温度较高的水不断升到水面,向空气散热, 湖泊中水的冻结就会从底部开始,从而容易导致湖泊中的水全部冻结.这样一来,就毁掉了湖泊中的一切经不起冻结的生命.

6,15摄氏度时,水的密度是多少?

1个标准大气压(101325Pa)999.10 kg/m32个大气压 999.15 kg/m33个大气压 999.20 kg/m34个大气压 999.24 kg/m35个大气压 999.29 kg/m3误差(不确定度)不超过0.001% 密度是单位体积的质量。国际单位为千克每立方米(kg/m³),此外还常用克每立方厘米(g/cm³)。 对于液体或气体还用千克每升(kg/L)、克每毫升(g/mL)。但g/L一般不用。

7,水在摄氏多少度时密度最大?

  4

  水在摄氏4度时密度最大之谜

  陈超

  300多年前,人类就已知道水在摄氏4度时密度最大这一现象。虽然这一现象仅仅是由于水的分子结构造成的,但对于水的这种特性,人们至今仍不能作出科学的解释。

  日本物质材料研究机构物质研究所研究员三岛修和铃木芳治通过实验证实,在低温条件下两种非晶态冰之间存在不连续性转移。在低温情况下,低密度水和高密度水呈完全不同的形态。这项研究不仅首次解释了水在摄氏4度时密度最大的现象,而且在生态系统、水溶液系统等与水有关的领域有广泛的研究与应用价值。该成果发表在最新一期的《自然》杂志上。

  多年来,科学家通过理论计算与实验,一直在进行水的非晶态多样性研究。水通常在摄氏零度时结冰。但水在摄氏零度以下时也可保持液体状态,称作过冷却水。当过冷却水到达临界点以下时就会分离出两种状态,既低密度水和高密度水。与此相对应,也存在低密度和高密度两种非晶态冰。由于水在低温时易于结冰,也由于没有非晶态冰之间互相转移的现存理论,水的非晶态多样性学说存在很多争论。其中之一就是两种密度的非晶态水是否会发生连续转移。

  日本科学家的这项研究,观察了高密度非晶态冰(HDA)向低密度非晶态冰( LDA)变化的过程。发现 H DA在零下158摄氏度以下时整体均一膨胀,在零下158摄氏度时随着不均一的体积变化迅速向 L DA转移。在转移过程中,出现两种成分共存状态,随着时间推移, H DA和LDA逐渐分离。研究证实,低温下两种水之间的转移是不连续的。

  科学家认为,这项研究成果是揭开水领域各种问题的重大突破,将对今后过冷却水等研究产生重大影响,同时将带动对同温层中的云的研究及在冰点下活动的动植物细胞内存在的过冷却水的研究。如果今后能够控制这两种水的临界点,就可以自由控制水的结晶,对人类控制地球环境和开发生物冷却保存技术极有价值。