互质数的概念,什么是互质数?
本文目录索引
1,什么是互质数?
互质数为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。互质数具有以下定理: 1、两个数的公因数只有1的两个非零自然数,叫做互质数;举例:2和3,公因数只有1,为互质数; 2、多个数的若干个最大公因数只有1的正整数,叫做互质数; 3、两个不同的质数,为互质数; 4、1和任何自然数互质。两个不同的质数互质。一个质数和一个合数,这两个数不是倍数关系时互质。不含相同质因数的两个合数互质; 5、任何相邻的两个数互质; 6、任取出两个正整数他们互质的概率(最大公约数为一)为6/π^2。 扩展资料: 根据互质数的定义,可总结出一些规律,利用这些规律能迅速判断一组数是否互质。 1、两个不相同的质数一定是互质数。如:7和11、17和31是互质数。 2、两个连续的自然数一定是互质数。如:4和5、13和14是互质数。 3、相邻的两个奇数一定是互质数。如:5和7、75和77是互质数。 4、1和其他所有的自然数一定是互质数。如:1和4、1和13是互质数。 5、两个数中的较大一个是质数,这两个数一定是互质数。如:3和19、16和97是互质数。 6、两个数中的较小一个是质数,而较大数是合数且不是较小数的倍数,这两个数一定是互质数。如:2和15、7和54是互质数。 7、较大数比较小数的2倍多1或少1,这两个数一定是互质数。如:13和27、13和25是互质数。 参考资料来源:百度百科-互质数
2,互质数是什么意思
互质数为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。 扩展资料 这里所说的“两个数”是指除0外的所有自然数。“公因数只有 1”,不能误说成“没有公因数。”三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、5。另一种不是两两互质的。如6、8、9。 两个整数(正整数)(N),除了1以外,没有其他公约数时,称这两个数为互质数.互质数的概率是6/π^2。互质的两个数相乘,所得的数不一定是合数。 因为一和任何一个非零的自然数互质,一乘任何非零自然数,所得的积不一定是合数。如1与17互质,1×17=17,17不是合数。 参考资料互质数_百度百科
3,杯子里的互质数是什么?
从前,在匈牙利,有一个叫埃杜斯的数学家。他听人说,有个叫波沙的12岁的男孩,非常聪明,特别能解数学题。埃杜斯就想,应该去考考他,看看这个小孩是不是真的像别人说的那么聪明。
埃杜斯就找到了波沙的家,见到了小波沙。波沙家的人热情款待了他。他向波沙提了一个问题:“从1、2、3直到100,随便取出51个数,至少有两个数是互质的,你能说出其中的道理吗?”
什么是互质数呢?比如说,2和7,它们之间除了1以外没有公约数,我们称它们为“互质数”。
波沙想了一会儿,就知道这个题该怎么解了。只见他把爸爸、妈妈和埃杜斯先生面前的杯子都拿到自己的面前,说:“先生,比如说这几只杯子是50个。我把1和2这两个数放进第一个杯子,把3和4这两个数放进第二个杯子,这样两个两个地往杯子里放,最后把99和100两个数放进第50个杯子,我这样放可以吧?”
埃杜斯先生点点头。
小波沙又说:“因为你刚才说,要从里面挑出51个数,所以至少有一只杯子里的数全被我挑走,而连续两个自然数,当然就会互质了!”
埃杜斯先生问:“你为什么这么说两个连续的自然数会互质呢?”
波沙说:“两个相邻的自然数,一个是a,一个是b,它们如果不互质,那么它们俩就必然有大于1的公约数c,那c一定是b-a的约数。可是b-a又等于1,不可能有大于1的约数。既然不可能,那就说明两个相邻的自然数一定是互质的!”
埃杜斯先生感叹地说:“你答得真好啊!”
4,什么是互质数
互质数为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。 互质数具有以下定理: (1)两个数的公因数只有1的两个非零自然数,叫做互质数;举例:2和3,公因数只有1,为互质数; (2)多个数的若干个最大公因数只有1的正整数,叫做互质数; (3)两个不同的质数,为互质数; (4)1和任何自然数互质。两个不同的质数互质。一个质数和一个合数,这两个数不是倍数关系时互质。不含相同质因数的两个合数互质; (5)任何相邻的两个数互质; (6)任取出两个正整数他们互质的概率(最大公约数为一)为6/π^2。 扩展资料: 1和任何数都成倍数关系,但和任何数都互质。因为1的因数只有1,而互质数的原则是:只要两数的公因数只有1时,就说两数是互质数。因为1只有一个因数所以1既不是质数(素数),也不是合数,无法再找到1和其他数的别的公因数了。1和-1与所有整数互素,而且它们是唯一与0互素的整数。 互质数的写法:如c与m互质,则写作(c,m)=1。 小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。” 这里所说的“两个数”是指自然数。 “公约数只有 1”,不能误说成“没有公约数。” 这里有一个误区,认为0不与任何数互质。严格地按照互质的定义来看0与1,-1均互质,通过任意有理数的表示方式a/b(a,b互质且b为正整数),同样可以得出0与1,-1均必须互质,否则0不是有理数。 参考资料来源:百度百科-互质数
5,什么叫互质数
小学数学教材对互质数是这样定义的:公因数只有1的两个自然数,叫做互质数。 这里所说的“两个数”是指除0外的所有自然数。 “公因数只有 1”,不能误说成“没有公因数。” (1)两个不相同质数一定是互质数。例如,2与7、13与19。 (2)一个质数如果不能整除另一个合数,这两个数为互质数。例如,3与10、5与 26。 (3)1不是质数也不是合数。 (4)相邻的两个自然数是互质数。例如 15与 16。 (5)相邻的两个奇数是互质数。例如 49与 51。 (6)大数是质数的两个数是互质数。例如97与88。 (7)小数是质数,大数不是小数的倍数的两个数是互质数。例如 7和 16。 (8)2和任何奇数是互质数。如2和87。 扩展资料: 规律判断法 根据互质数的定义,可总结出一些规律,利用这些规律能迅速判断一组数是否互质。 (1)两个不相同的质数一定是互质数。如:7和11、17和31是互质数。 (2)两个连续的自然数一定是互质数。如:4和5、13和14是互质数。 (3)相邻的两个奇数一定是互质数。如:5和7、75和77是互质数。 (4)1和其他所有的自然数一定是互质数。如:1和4、1和13是互质数。 (5)两个数中的较大一个是质数,这两个数一定是互质数。如:3和19、16和97是互质数。 (6)两个数中的较小一个是质数,而较大数是合数且不是较小数的倍数,这两个数一定是互质数。如:2和15、7和54是互质数。 (7)较大数比较小数的2倍多1或少1,这两个数一定是互质数。如:13和27、13和25是互质数。 分解判断法 如果两个数都是合数,可先将两个数分别分解质因数,再看两个数是否含有相同的质因数。如果没有,这两个数是互质数。如:130和231,先将它们分解质因数:130=2×5×13,231=3×7×11。分解后,发现它们没有相同的质因数,则130和231是互质数。 求差判断法 如果两个数相差不大,可先求出它们的差,再看差与其中较小数是否互质。如果互质,则原来两个数一定是互质数。如:194和201,先求出它们的差,201-194=7,因7和194互质,则194和201是互质数。 求商判断法 用大数除以小数,如果除得的余数与其中较小数互质,则原来两个数是互质数。如:317和52,317÷52=6……5,因余数5与52互质,则317和52是互质数。
6,互质数的几种特殊情况
互质数有: 1)、1与非0自然数; 2)、不同的两个质数; 3)、2与奇数; 4)、相邻的两个自然数; 5)、质数与不是它的倍数的自然数; 扩展资料: 互质数具有以下定理: (1)两个数的公因数只有1的两个非零自然数,叫做互质数;举例:2和3,公因数只有1,为互质数; (2)多个数的若干个最大公因数只有1的正整数,叫做互质数; (3)两个不同的质数,为互质数; (4)1和任何自然数互质。两个不同的质数互质。一个质数和一个合数,这两个数不是倍数关系时互质。不含相同质因数的两个合数互质; (5)任何相邻的两个数互质; (6)任取出两个正整数他们互质的概率(最大公约数为一)为6/π^2。 参考资料来源:百度百科-互质数
7,互质数是什么意思?
互质数即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。 互质数具有以下定理: (1)两个数的公因数只有1的两个非零自然数,叫做互质数;举例:2和3,公因数只有1,为互质数; (2)多个数的若干个最大公因数只有1的正整数,叫做互质数; (3)两个不同的质数,为互质数; (4)1和任何自然数互质。两个不同的质数互质。一个质数和一个合数,这两个数不是倍数关系时互质。不含相同质因数的两个合数互质; (5)任何相邻的两个数互质; (6)任取出两个正整数他们互质的概率(最大公约数为一)为6/π^2。 扩展资料: 因为一和任何一个非零的自然数互质,一乘任何非零自然数,所得的积不一定是合数,如1与17互质,1×17=17,17不是合数。 公约数只有1的两个数叫做互质数,根据互质数的概念可以对一组数是否互质进行判断,如9和11的公约数只有1,则它们是互质数。