1. 伯乐范文网 > 知识库 >

阿基米德分牛问题,c++解阿基米德分牛问题

本文目录索引

1,c++解阿基米德分牛问题

假设:
公的白、黑、花、棕牛的数量分别是x1,y1,z1,w1只
母的白、黑、花、棕牛的数量分别是x2,y2,z2,w2只

根据题目可以得到如下等式:
x1 - w1 = 5 / 6 * y1;
y1 - w1 = 9 / 20 * z1;
z1 - w1 = 13 / 42 * x1;
x2 = 7 / 12 * ( y1 + y2 );
y2 = 9 / 20 * ( z1 + z2 );
z2 = 11 / 30 * ( w1 + w2 );
w2 = 13 / 42 * ( x2 + x2 );

简化以上等式后可以得到:
x1=5936/2376*w1
y1=178/99*w1
z1=1580/891*w1
x2=2402120/1383129*w1
y2=543694/461043*w1
z2=3709101600773436857/4377498837804122112*w1
w2=73640654275250721919/56177901751819567104*w1

最后如何通过程序来实现呢?
只需要循环w1,求出一个值w1,这个值要能使x1,x2,y1,y2,z1,z2,w2必须为整数,那么包括w1这个数在内的这8个数就是这道题的答案咯 答案补充 程序我就不写了哈,希望你自己写出来,呵呵~~

c++解阿基米德分牛问题

2,阿基米德群牛问题的问题的叙述

诗的大意是:西西里岛草原上有一大群牛,公牛和母牛各有4种颜色。设W、X、Y、Z分别表示白、黑、黄、花色的公牛数, w、x、y、z分别表示这白、黑、黄、花色的母牛数。要求有W=(1/2+1/3)X +Y,X=(1/4+1/5)Z+Y,Z=(1/6+1/7)W+Y,w=(1/3+ 1/4)(X+x),x=(1/4+1/5)(Z+z),z=(1/5+1/6)(Y +y),y=(1/6+1/7)(W+w),(W+X)为一个正方形(数),(Y+Z )为一个三角数(即形如m(m+1)/2的数,m为正整数)。求各种颜色牛的数目。倒数第二个条件中的正方形数有两种解释:一种是W+X=mn,因为要挤成一个正方形,还需要考虑身长与体宽的比,故右端不是任意两个正整数之积mn而是kn^2(k是常数,称为「较简问题」另一种为W+ X=n^2(完全平方数),即长与宽上牛的数目相等,称为「完全问题」。

3,阿基米德分牛问题的解法和答案

公元前3世纪下半叶古希腊科学家阿基米德在论着《群牛问题》中记载了本问题。原文用诗句写成,大意是:西西里岛草原上有一大群牛,公牛和母牛各有4种颜色。设W、X、Y、Z分别表示白、黑、黄、花色的公牛数, w、x、y、z分别表示这白、黑、黄、花色的母牛数。要求有W=(1/2+1/3)X +Y,X=(1/4+1/5)Z+Y,Z=(1/6+1/7)W+Y,w=(1/3+ 1/4)(X+x),x=(1/4+1/5)(Z+z),z=(1/5+1/6)(Y +y),y=(1/6+1/7)(W+w),(W+X)为一个正方形(数),(Y+Z )为一个三角数(即m(m+1)/2,m为正数)。求各种颜色牛的数目。最后两个条件 中的正方形数有两种解释:一种是W+X=mn,(因为牛的身长与体宽不一样,排成正方形后两个边牛的数目不一样)称为「较简问题」,求解后牛的总数近6万亿,另一种为W+ X=n2(长与宽的数目相等),称为「完全问题」。即使没有最后两个条件,群牛问题的最小正数解也达几百万到上千万。

1880年阿姗托尔提供了一种解答,导致二元二次方程 t2-du2=1,因d的值达400多万亿,所以完全问题的最小解中牛的总数已超过20多万位的数。可见阿基米德当时未必解出过这个问题,而它的叙述与实际也不符。历史上对这问题的研究丰富了初等数论的内容。

4,阿基米德分牛问题

过程
解:设公牛为1,母牛为2,白牛为A,黑牛为B,花牛为C,棕牛为D。

则,由题意可得:

A1-D1=(1/2+1/3)B1=5/6*B1 ①

B1-D1=(1/4+1/5)C1=9/20*C1 ②

C1-D1=(1/6+1/7)A1=13/42*A1 ③

A2=(1/3+1/4)B=7/12(B1+B2) ④

B2=(1/4+1/5)C=9/20(C1+C2) ⑤

C2=(1/5+1/6)D=11/30(D1+D2) ⑥

D2=(1/6+1/7)A=13/42(A1+A2) ⑦

②-①,整理得:A1=11/6*B1-9/20*C1 ⑧

③-①,整理得:55/42*A1=C1+5/6*B1 ⑨

将⑧代入⑨,整理得:B1=801/790*C1 ⑩

将⑩代入⑧,整理得: A1=1113/790*C1 ①’

将⑩①’代入①,整理得:D1=445.5/790*C1 ②’

将①’代入⑦,整理得:D2=14469/33180*C1+13/42*A2 ③’

将②’ ③’代入⑥,整理得:C2=6083/16590*C1+143/1260*A2 ④’

将④’代入⑤,整理得:B2=68019/110600*C1+429/8400*A2 ⑤’

将⑩⑤’代入④,整理得:A2=360318/367903*C1 ⑥’

将⑥’代入⑤’,整理得: B2=2446623/3679030*C1 ⑦’

将⑥’代入④’,整理得:C2=175791/367903*C1 ⑧’

将⑥’代入③’,整理得:D2=5439213/7358060*C1 ⑨’

综上所述:

A1=1113/790*C1 ①’ B1=801/790*C1 ⑩ D1=445.5/790*C1 ②’

A2=360318/367903*C1 ⑥’ B2=2446623/3679030*C1 ⑦’

C2=175791/367903*C1 ⑧’ D2=5439213/7358060*C1 ⑨’

因为,牛的个数必然是正整数,因而,C1必为7358060P(P是正整数)。

5,阿基米德群牛问题的问题的解决

“较简问题”已由Jul.Fr.武尔姆(Wurm)解决.“完全问题”在1880年为阿姆托尔(Amthor)所解决。即使较简问题,牛的总数也已达到5916837175686头之多!而完全问题导致2元2次方程: t^2-4729494u^2=1。最小解牛的总数是7.766×10^206544,位数超过20万!当时阿基米德未必解得出来。而即使没有最后两个条件,群牛问题的最小正数解也达50'389'082。故它的叙述自然与实际不符——西西里岛再大也装不下这么多牛的。但历史上对这问题的研究丰富了初等数论的内容。

6,阿基米德牛群 问题

公元前3世纪,当波加的阿波罗尼奥斯天真地继续研究阿基米德的大数时,可能不知晓等待他以及数代数学家的将是什么。“我要让你们看一看谁懂得大数,”阿基米德想。据说,他出于报复之心而虚构出关于牧牛的计算问题,解决这一问题所需的数字是如此庞大,以致直到最近才得以解决。而且,解决这一问题的并不是人而是机器:世界上最快的电脑。
  牛群的问题是怎么回事呢?它真是首先由阿基米德提出来的吗?别管阿基米德是否真是出于一时赌气而凭空想出这个问题的,人们知道他确曾推算过这个问题,因此至少有2,200年的历史了。
  这个问题开始是这样的:“啊!朋友,如果你智慧过人,那就专心致志算出那天那群公牛的数目吧。它们曾在西西里岛的大平原上吃草,按毛色它们被分成4组:乳白牛、黑牛、黄牛和花斑牛。每组中的公牛数占大多数,它们之间的关系为:
1、白公牛=黄公牛+(1/2+1/3)黑公牛
2、黑公牛=黄公牛+(1/4+1/5)花斑
3、花斑公牛=黄公牛+(1/6+1/7)白公牛
4、白公牛=(1/3+1/4)黑牛
5、黑公牛=(1/4+1/5)花斑公牛
6、花斑公牛=(1/5+1/6)黄牛
7、黄公牛=(1/6+1/7)白牛
  该问题继续说:“啊!朋友,如果你能算出每群中公牛和母牛的数目,你还是称不上无所不知或精通数字,也不能被列入智者之列。”于是该问题涉及到其数学的本质部分:解7个带有8个未知数的等式(4组不同颜色的公牛和4组相应颜色的奶牛)。原来,这些等式并不难解。事实上,它们有无限多的答案,而牛群总头数的最小数值为50,389,082,这些牛可以在西西里6,358,400公顷的大平原上自由自在地吃草。
  然而,阿基米德并未就此停止。他对公牛数目另外又提出了两项限制条件,从而使这问题变得难多了:
  8.白公牛+黑公牛=一个平方数。
  9.花斑公牛+黄公牛=一个三角数。
  问题最后说:“如果你已算出这群牛的总数,噢!朋友,你俨然就是一个征服者了,不消说,你就是数字科学方面的专家了。”
由于用三角数和平方数对公牛进行限制,牛问题变得非常棘手,两千年里没有取得真正的进展。1880年,一位德国研究者在经过枯燥计算之后表明:符合所有8项条件的最小的牛头数为一个有206,545位数的数,该数是以776开头的。阿基米德可能是一个有魔力之人,但他决不是个现实主义者:西西里小岛上决不会容下这样一群牛。正如一位数理论家所说:“即使它们是最小的微生物——不,即使它们是电子,一个以从地球到银河的距离为半径的圆也只能包含这种动物的很小一部分。”
  但没人认为缺乏现实感会妨碍数学研究。20年后的1899年,伊利诺斯希尔斯伯勒的一位土木工程师和他的几位朋友组成希尔斯伯勒数学俱乐部,致力于发现余下的206,542位数。经过4年运算后,他们最后宣布,他们发现了12位最右边的数,又另外发现了28位最左边的数,但后来证明他们算的数都弄错了。60年后,3位加拿大人运用计算机首次发现了全部的答案,但他们从未予以公开发表。1981年,当出自劳伦斯�6�1利弗莫尔国家实验室的克雷1号巨型计算机的47页硬拷贝缩印在《趣味数学》杂志上时,全部的206,545位数才最终公布于世。

当时,克雷1号是世界上运算最快的计算机。克雷巨型计算机是昂贵的——最新型号值2,000万美元,实验室和公司不会买它来解决古老的数论问题。购买它是用于配制新的药物,勘探石油,破译苏联密码,在好莱坞电影中造成辉煌的特别效果以及模拟太空武器。
  然而,人们常常让巨型计算机解决数论史上棘手的计算问题,以便证明它们是否运转正常。计算这种问题的好处是可以轻易地对其答案——即使以前不知道这些答案——进行检验:将它们还原到其等式中去。阿基米德的牛群问题正是在劳伦斯�6�1利弗莫尔实验室检验克雷1号时得以解决的。这台巨型计算机仅用10分钟就发现了206,545位数的答案,并两次检验了这一问题的运算。

7,求100道初一上学期数学难题(带答案)

你是什么教材
如果可以我帮你




初一奥数练习题一
甲多开支100元,三年后负债600元.求每人每年收入多少?
S的末四位数字的和是多少?

    

4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.

5.求和:

6.证明:质数p除以30所得的余数一定不是合数.



8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.
9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.
解答:
  
   

  所以     x=5000(元).
  
  所以S的末四位数字的和为1+9+9+5=24.
  
3.因为
 
     a-b≥0,即a≥b.即当b

≥a>0或b≤a<0时,等式成立.
4.设上坡路程为x千米,下坡路程为y千米.依题意则
  



由②有2x+y=20,           ③
  由①有y=12-x.将之代入③得 2x+12-x=20.
  所以    x=8(千米),于是y=4(千米).
 5.第n项为

  所以
         
     
         
  6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.
  7.设

  由①式得(2p-1)(2q-1)=mpq,即
(4-m)pq+1=2(p+q).
  可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.
  (1)若m=1时,有

  解得p=1,q=1,与已知不符,舍去.
  (2)若m=2时,有

  因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.
  (3)若m=3时,有

  解之得

  故                  p+q=8.
  8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy+y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.
  9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以

 
  上述两式相加

  另一方面,
S△PCD=S△CND+S△CNP+S△DNP.
  因此只需证明
S△AND=S△CNP+S△DNP.
  由于M,N分别为AC,BD的中点,所以
S△CNP=S△CPM-S△CMN
   =S△APM-S△AMN
 =S△ANP.
  又S△DNP=S△BNP,所以
S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.



初一奥数练习题二
1.已知3x2-x=1,求6x3+7x2-5x+2000的值.
2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?
3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.

4.已知方程组


的解应为

一个学生解题时把c抄错了,因此得到的解为
求a2+b2+c2的值.
5.求方程|xy|-|2x|+|y|=4的整数解.
6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)

7.对k,m的哪些值,方程组 至少有一组解?

8.求不定方程3x+4y+13z=57的整数解.
9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?
解答:
1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.
2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则
y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.
所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.
3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以
∠ADC+∠BCD=180°,
  所以   AD∥BC.①  又因为  AB⊥BC,②
  由①,② AB⊥AD.


4.依题意有

    
  所以 a2+b2+c2=34.
5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,
  所以(|x|+1)(|y|-2)=2.
  因为|x|+1>0,且x,y都是整数,所以

 
 所以有

  

6.设王平买三年期和五年期国库券分别为x元和y元,则

  因为 y=35000-x,
  所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,
  所以 1.3433x+48755-1.393x=47761,
  所以 0.0497x=994,
  所以 x=20000(元),y=35000-20000=15000(元).
7.因为 (k-1)x=m-4, ①
  
m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.
当k=1,m≠4时,①无解.
  所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.

8.由题设方程得

z=3m-y.
  
x=19-y-4(3m-y)-m =19+3y-13m.

原方程的通解为   其中n,m取任意整数值.



9.设苹果、梨子、杏子分别买了x,y,z个,则

  消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.
  代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.
  
x=20,y=8,z=12.
  
因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.


初一奥数练习题三

1.解关于x的方程

2.解方程

其中a+b+c≠0.
3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.
4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.
5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.
6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.
7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.
8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?
9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且

求证:n是4的倍数.
解答:
1.化简得6(a-1)x=3-6b+4ab,当a≠1时,
  
    

2.将原方程变形为

  由此可解得x=a+b+c.
3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.

  
依题意得
 
  去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,
  
  
  5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].
  由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],  所以 [0.23x]=0.
  又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.
  6.如图1-105所示.在△PBC中有BC<PB+PC, ①
  延长BP交AC于D.易证PB+PC<AB+AC. ②
  由①,② BC<PB+PC<AB+AC, ③
  同理 AC<PA+PC<AC+BC, ④
AB<PA+PB<AC+AB. ⑤
  ③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).
  
所以

7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千

米.依题意得

  
由①得16y2=9x2, ③

  由②得16y=24+9x,将之代入③得

  即 (24+9x)2=(12x)2.解之得

  于是

  所以两站距离为9×8+16×6=168(千米).
  8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.
    。
  
  又因为

  所以,k是偶数,从而n是4的倍数.


初一奥数练习题四
1.已知a,b,c,d都是正数,并且a+d<a,c+d<b.
求证:ac+bd<ab.
2.已知甲种商品的原价是乙种商品原价的1.5倍.因市场变化,乙种商品提价的百分数是甲种商品降价的百分数的2倍.调价后,甲乙两种商品单价之和比原单价之和提高了2%,求乙种商品提价的百分数.
3.在锐角三角形ABC中,三个内角都是质数.求三角形的三个内角.
4.某工厂三年计划中,每年产量递增相同,若第三年比原计划多生产1000台,那么每年比上一年增长的百分数就相同,而且第三年的产量恰为原计划三年总产量的一半,求原计划每年各生产多少台?
  



    z=|x+y|+|y+1|+|x-2y+4|,
求z的最大值与最小值.
8.从1到500的自然数中,有多少个数出现1或5?
9.从19,20,21,…,98这80个数中,选取两个不同的数,使它们的和为偶数的选法有多少种?
解答:
  1.由对称性,不妨设b≤a,则ac+bd≤ac+ad=a(c+d)<ab.
  2.设乙种商品原单价为x元,则甲种商品的原单价为1.5x元.设甲商品降价y%,则乙商品提价2y%.依题意有1.5x(1-y%)+x(1+2y%)=(1.5x+x)(1+2%),
  化简得1.5-1.5y+1+2y=2.5×1.02.  所以y=0.1=10%,
  所以甲种商品降价10%,乙种商品提价20%.
  3.因为∠A+∠B+∠C=180°,所以∠A,∠B,∠C中必有偶数.唯一的偶质数为2,所以∠C=2°.所以∠A+∠B=178°.由于需∠A,∠B为奇质数,这样的解不唯一,如

  4.设每年增产d千台,则这三年的每一年计划的千台数分别为a-d,a,a+d依题意有

   解之得

  所以三年产量分别是4千台、6千台、8千台.
  
不等式组:

    
     
   所以 x>2;


     
    
               无解.


    
  
6.设原式为S,则

   所以


          
            
  






        <0.112-0.001=0.111.
  因为      

所以 =0.105.

  7.由|x|≤1,|y|≤1得 -1≤x≤1,-1≤y≤1.
  所以y+1≥0,x-2y+4≥-1-2×1+4=1>0.
  所以z=|x+y|+(y+1)+(x-2y+4)=|x+y|+x-y+5.
  (1)当x+y+≤0时,z=-(x+y)+x-y+5=5-2y.
  由-1≤y≤1可推得3≤5-2y≤7,所以这时,z的最小值为3、最大值为7.
  (2)当x+y>0时,z=(x+y)+(x-y+5)=2x+5.
  由-1≤x≤1及可推得3≤2x+5≤7,所以这时z的最小值为3、最大值为7.
  由(1),(2)知,z的最小值为3,最大值为7.
  8.百位上数字只是1的数有100,101,…,199共100个数;十位上数字是1或5的(其百位上不为1)有2×3×10=60(个).个位上出现1或5的(其百位和十位上都不是1或5)有2×3×8=48(个).再加上500这个数,所以,满足题意的数共有
100+60+48+1=209(个).
  9.从19到98共计80个不同的整数,其中有40个奇数,40个偶数.第一个数可以任选,有80种选法.第一个数如果是偶数,第二个数只能在其他的39个偶数中选取,有39种选法.同理,第一个数如果是奇数,第二个数也有39种选法,但第一个数为a,第二个为b与第一个为b,第二个为a是同一种选法,所以总的选法应该折半,即共有

  种选法.



初一奥数练习题五
1.一项任务,若每天超额2件,可提前计划3天完工,若每天超额4件,可提前5天完工,试求工作的件数和原计划完工所用的时间.
  2.已知两列数
2,5,8,11,14,17,…,2+(200-1)×3,
5,9,13,17,21,25,…,5+(200-1)×4,
  它们都有200项,问这两列数中相同的项数有多少项?
  3.求x3-3px+2q能被x2+2ax+a2整除的条件.
  
4.证明不等式

  5.若两个三角形有一个角对应相等.求证:这两个三角形的面积之比等于夹此角的两边乘积之比.
  6.已知(x-1)2除多项式x4+ax3-3x2+bx+3所得的余式是x+1,试求a,b的值.
  7.今有长度分别为1,2,3,…,9的线段各一条,可用多少种不同方法,从中选用若干条,使它们能围成一个正方形?
  8.平面上有10条直线,其中4条是互相平行的.问:这10条直线最多能把平面分成多少部分?
  9.边长为整数,周长为15的三角形有多少个?
解答:
  1.设每天计划完成x件,计划完工用的时间为y天,则总件数为xy件.依题意得

     
   解之得

  总件数xy=8×15=120(件),即计划用15天完工,工作的件数为120件.
  2.第一列数中第n项表示为2+(n-1)×3,第二列数中第m项表示为5+(m-1)×4.要使2+(n-1)×3=5+(m-1)×4.
  所以

因为1≤n≤200,所以



      
  所以  m=1,4,7,10,…,148共50项.
3.





     
x3-3px+2q被x2+2ax+a2除的余式为3(a2-p)x+2(q+a3),

  所以所求的条件应为

  
4.令
          
  因为

所以






      
  5.如图1-106(a),(b)所示.△ABC与△FDE中,

∠A=∠D.现将△DEF移至△ABC中,使∠A与∠D重合,DE=AE',DF=AF',连结F'B.此时,△AE'F'的面积等于三角形DEF的面积.


  ①×②得
    


  6.不妨设商式为x2+α·x+β.由已知有
   x4+ax3-3x2+bx+3
    =(x-1)2(x2+α·x+β)+(x+1)
    =(x2-2x+1)(x2+α· x+β)+x+1
    =x4+(α-2)x3+(1-2α+β)x2+(1+α-2β)x+β+1.
  比较等号两端同次项的系数,应该有

  只须解出

  所以a=1,b=0即为所求.
  7.因为

  所以正方形的边长≤11.
  下面按正方形边的长度分类枚举:
  (1)边长为11:9+2=8+3=7+4=6+5,
    可得1种选法.
  (2)边长为10:9+1=8+2=7+3=6+4,
    可得1种选法.
  (3)边长为9:9=8+1=7+2=6+3=5+4,
    可得5种选法.
  (4)边长为8:8=7+1=6+2=5+3,
    可得1种选法.
  (5)边长为7:7=6+1=5+2=4+3,
    可得1种选法.
  (6)边长≤6时,无法选择.
  综上所述,共有1+1+5+1+1=9
  种选法组成正方形.
  8.先看6条不平行的直线,它们最多将平面分成
2+2+3+4+5+6=22个部分.
  现在加入平行线.加入第1条平行线,它与前面的6条直线最多有6个交点,它被分成7段,每一段将原来的部分一分为二,故增加了7个部分.加入第2,第3和第4条平行线也是如此,即每加入一条平行线,最多增加7个部分.因此,这些直最多将平面分成
22+7×4=50
  个部分.
  9.不妨设三角形的三边长a,b,c满足a≥b≥c.由b+c>a,a+b+c=15,a≥b≥c可得,15=a+(b+c)>2a,所以a≤7.又15=a+b+c≤3a,故a≥5.于是a=5,6,7.当a=5时,b+c=10,故b=c=5;当a=b时,b+c=9.于是b=6,c=3,或b=5,c=4;当a=7时,b+c=8,于是b=7,c=1,或b=6,c=2,或b=5,c=3,或b=4,c=4.
  所以,满足题意的三角形共有7个.

8,朋友,如果你自认为还有几分聪明, 请来准确无误地算一算太阳神的牛群, 它们聚集在西西里岛,

朋友,如果你自认为还有几分聪明, 请来准确无误地算一算太阳神的牛群, 它们聚集在西西里岛, 分成四群悠闲地品尝青草。 第一群象乳汁一般白洁, 第二群闪耀着乌黑的光泽。 第三群棕黄, 第四群毛色花俏, 每群牛有公有母、有多有少。 先告诉你各群的公牛比例: 白牛数等于棕牛数再加上黑牛数的三分之一又二分之一。 此外,黑牛数为花牛数的四分之一加五分之一,再加上全部棕公牛。 朋友,你还必须牢记花牛数是白牛的六分之一又七分之一 再搭上全部的棕色公牛。 但是,各群的母牛都有不同的比例: 白色的母牛数等于全部黑色公母牛的三分之一又四分之一。 而黑母牛又是全部花牛的四分之一加上五分之一, 请注意,母牛公牛都要算进去。 同样的,花母牛的数字是全部棕牛的五分之一加六分之一。 最后,棕色母牛与全部白牛的六分之一加七分之一相一致。 朋友,若你能确切地告诉我这些公牛母牛膘肥体壮、毛色各异, 一共有多少聚集在那里, 你就不愧为精通算计。 但你还称不上聪明无比, 除非你能回答如下的问题: 把所有的黑白公牛齐集一起, 恰排成正方形,整整齐齐。 辽阔的西西里岛草地, 还有不少公牛在聚集。 当棕色的公牛与花公牛走到一起, 排成一个三角形状。 棕色公牛、花公牛头头在场, 其他的牛没有一头敢往里闯。 朋友,你若能够根据上述条件, 准确说出各种牛的数量, 那你就是胜利者, 你的声誉将如日月永放光芒。