什么是白矮星,什么是白矮星
本文目录索引
1,什么是白矮星
一般认为,恒星演化到后期阶段,往往要向外猛烈抛发大量物质,形成行星状星云。而中央残核则变成一颗致密天体--白矮
星或中子星。
白矮星,体积和地球差不多。但它的密度却是太阳平均密度的10万倍以上。1862年,美国光学家克拉克发现了天狼星的一
颗伴星就是一颗白矮星。它的平均密度是每立方厘米175千克。(目前已观测到1000多颗白矮星)。
中子星,体积比白矮星更小,质量和太阳相当,但其半径只有十几公里,其密度高达每立方厘米10亿吨发上。中子星上一
个核桃大小的东西,在地球上要用几万艘万吨巨轮才拖得动。简直令人不可思议。中子星不仅密度高得惊人,它的温度、压
力、磁场也高得惊人,它中心的温度高达60亿度。它的中心压国比太阳中心压力高3亿倍,它的磁场比太阳磁场高几万亿倍。
2,什么是白矮星
白矮星(White Dwarf,也称为简并矮星)是一种低光度、高密度、高温度的恒星。因为它的颜色呈白色、体积比较矮小,因此被命名为白矮星。表面温度8000K,发出白光,可有几十亿年寿命。 白矮星(White Dwarf,也称为简并矮星)是一种低光度、高密度、高温度的恒星。因为它的颜色呈白色、体积比较矮小,因此被命名为白矮星。白矮星是演化到末期的恒星,主要由碳构成,外部覆盖一层氢气与氦气。白矮星在亿万年的时间里逐渐冷却、变暗,它体积小,亮度低,但密度高,质量大。1982年出版的白矮星星表表明,银河系当时中已被发现的白矮星有488颗,它们都是离太阳不远的近距天体。随着观测天文学在最近几十年迅速的发展,尤其是大型巡天项目的实施,新发现的天体数目急剧增加,尤其是SDSS的光谱巡天和Gaia卫星的巡天已经发现了数十万的白矮星。 天文学让我们了解到宇宙中发生的奇异事件,其所蕴含的物理解释却让人难以想象,最近科学家发现白矮星的内部可能出现神奇的“结晶”核体。 大多数的恒星内核通过氢核聚变进行燃烧,将质量转变为能量,并产生光和热量,当恒星内部氢燃料完成消耗完后就开始进行氦融合反应,并形成更重的碳和氧,这一过程对于类似我们太阳这样的恒星而言,就显得较为短暂,并形成碳氧组成的白矮星,如果其质量大于1.4倍太阳质量,就会发生Ia型超新星爆发。 麦克唐纳天文台的2.1米望远镜对GD 518白矮星的观测发现,其表面温度达到12,000度,是太阳的两倍左右,质量为太阳的1.2倍,根据恒星演化模型,其主要成分为氧和氖。通过对GD 518白矮星亮度的变化判断,实际上它正在进行“脉冲”式的膨胀和收缩,这意味着其内部存在不稳定性,科学家预测其内部已经出现了结晶或者凝固现象,形成一定半径的“小结晶球”,这是一个非常不可思议的结果,科学家认为继续对这颗白矮星进行调查,有助于为其他类型的超新星爆发提供依据,更好地测量出宇宙的大尺度范围。
3,白矮星是什么?
白矮星是一种由简并态物质组成的小型致密星,因此又称为简并矮星,它们是通过电子简并压和自身引力相平衡的方式维持自身结构的稳定。白矮星的主要成分是碳原子核、氧原子核以及电子,还有少量的氦、氖元素,它们的主要特征是高密度、高温、低光度,存在一个质量上限——钱德拉塞卡极限,其数值约等于1.4个太阳质量。 白矮星内部结构图 通常认为白矮星是小质量恒星演化的结果,当恒星演化至红巨星阶段末期,由于内部核燃料即将消耗殆尽,从而无法维持结果的稳定,因此星体在自身引力的作用下剧烈收缩,结果可能会引发新星或者超新星事件将一部分质量抛射进宇宙空间,但是由于恒星本身质量不高,因此引力无法使大部分原子核解体病形成大量的中子,因此最终演化的残骸将会达到电子简并压和引力的平衡,白矮星就这么形成了。 白矮星的科学意义非常重大。首先,白矮星的存在证明了现有的小恒星演化模型的正确,从而间接证明了引力理论和量子相变理论的正确性;其次,白矮星为我们研究元素(主要是碳、氧)的起源提供了重要线索;再次,白矮星也为我们研究其他种类的致密星(例如中子星和黑洞)提供了重要的参考。
4,什么是白矮星?
1844年,德国天文学家贝塞耳发现了一颗他自己没法看见的星。 我们在天空中见到的所有恒星都在四处运动着,但是它们实在太遥远了,以致于这样运动看上去显得极其缓慢。只有通过天文望远镜进行仔细的测量,这种运动才会通过天体位置的微小变化而呈现出来。 其实,即使用了望远镜,情况也好不了多少。只有那些最近的恒星才会显示出可察觉的位置变化。那些幽暗而遥远的恒星,看起来好像根本没有运动一般。 天狼星是离我们最近的恒星之一,它离我们大约有肋万亿千米那么远。对于恒星而言,那就算很近的了。天狼星是天空中最亮的星,其部分原因是由于它非常近,以致于通过望远镜很容易就可以测量出它的运动。 贝塞耳打算仔细地研究这种运动,因为地球绕着太阳运行,所以我们观望群星时的角度总是不断地变化着。由于地球在运动,我们便看到一颗恒星运动时不是走笔直的直线,而是沿着一条稍稍摆动的线前进。恒星越近,这种摆动就越大。如果进行仔细的测量,就可以根据这种摆动的大小计算出恒星的距离,贝塞耳对此特别感兴趣。事实上,他正是有史以来首先计算出一颗恒星距离的天文学家,那是1838年的事情。 随后,他又对测量天狼星运动时的摆动发生了兴趣。他夜复一夜地测量天狼星的位置,终于发现天狼星运动时的摆动尚有事先料想不到的情况。由于地球在环绕着太阳公转,所以天狼星在改变着它的位置,但是也还有一种更加缓慢的位置变化,它与地球无关。 贝塞耳把注意力集中到这种新的运动上,他发现天狼星正在环绕着某个东西的轨道上运动,运动的方式恰好和地球在环绕太阳的轨道上运动一般。贝塞耳算出,天狼星绕此轨道转一周需要50年。 然而,使天狼星在此轨道上运动的到底是什么东西呢? 地球绕着太阳运动,是由于太阳强大的引力拉住它,使它保持在轨道上。天狼星必定也是被某种强大的引力拖住的。可是,天狼星是一颗质量达太阳质量两倍半的恒星(一样东西的质量是它所包含物质的数量)。根据天狼星的运动方式可以知道,一定有一个天体正在用引力拉它,这个天体应该大得同样可以成为一颗恒星。换句话说,天狼星必定正在与一颗伴星互相绕转。我们可以将天狼星称作“天狼A星”,其伴星则称为“天狼B星”。根据天狼A星运动的方式,可以知道其伴星(天狼B星)的质量必定与太阳大致相当。贝塞耳并不能看见天狼B星,但是既然引力拉曳必然来自于某个物体,那么这颗恒星就一定在那儿,虽然贝塞耳根本无法看见,贝塞耳称它为天狼星的暗伴星。 后来,他又注意到另一颗恒星南河三的运动方式,它同样必定有一颗暗伴星,即“南河三B星”。 1862年,美国的望远镜制造家阿尔万·格雷厄姆·克拉克正在为一具新望远镜制造透镜。这种透镜必须尽善尽美,以便透过它看到清晰明亮的星象。他完成工作以后,为了检验这块透镜的质量,便用它来观看天狼星,看它是否呈现为一个明锐的光点。 就在这么做的时候,克拉克惊讶地发现天狼星附近有一个微弱的光点。如果它是一颗恒星的话,那么就是他手头的所有星图上均未记录在案的一颗星,它会不会是抛光透镜时造成的疵瑕呢? 可是,无论他多么仔细地继续抛光透镜,这个光点总是消除不了,而当他观看其他亮星时,却并没有类似的光点。 最后,克拉克注意到这个光点恰好在天狼星的暗伴星应该在的位置上,他明白自己正在观看的就是它。归根到底,天狼B星并不是一颗完全死了的星星,它依然在发光,但是它发出的光仅为天狼A星的万分之一。 1895年,旅美德国天文学家舍贝勒注意到南河三附近有一个微弱的光点,它正是“南河三,B星”,它同样也没有完全死亡。 然而,到了舍贝勒的时代,天文家们对于恒星已经比先前了解得更多了。 光由许许多多长度不同的、极其微小的波组成,天文学家已经学会如何将星光分解成一条由这些波长各异的波组成的带子,这样的光波带就叫做光谱。 1893年,德国科学家维恩提出了光谱怎样随着光源的温度而变化。例如他指出:如果一颗恒星已趋残年而行将熄灭,那么当它冷却下来时颜色就应该转红。如果天狼B星是一颗垂死的恒星、它就应该是红的,可实际上却不是,天狼B星的光是白色的。 为了进一步验证这一点,就得仔细地研究天狼B星的光谱。可是,天狼B星非常幽暗,况且它又非常靠近极其明亮的天狼A星,以致于人们很难逮住这颗小星射来的光,并将它展成一条光谱。 1915年,美国天文学家亚当斯设法获得了天狼B星的光谱。他发现天狼B星的表面温度达8000℃,比太阳还热。太阳的表面温度仅为6000℃。 如果一颗像太阳那样的恒星位于天狼B星的距离上,它就应该成为一颗天空中明亮照耀的星星,那时它虽然不如天狼A星那么亮,但也还是很亮的。由于天狼B星比太阳还热,所以它在那样的距离上就应该比太阳更亮——但是实际上却不是这样。如果我们的太阳也和天狼B星一样远,那么天狼B星看起来就只有太阳的1/400那么亮。 怎么可能出现这样的情况呢? 事情一定是这样的:虽然天狼B星的表面亮得令人眩目,可是它的整个表面却非常之小。天狼B星必定是一颗非常小的星星。 天狼B星的温度虽然很高,但是却那么幽暗,这就使它的直径小到只有48000千米,一点也不比一颗大的行星更大。29颗像天狼B星那么大小的星星,一颗挨着一颗地排成一条直线,才和太阳的直径一样。正因为天狼B星既是白热的,同时又那么小,所以人们就称它为白矮星。这里所说的“矮”,就是个儿小的意思。南河三B星也是一颗白矮星。 今天,人们认为白矮星是很常见的。天文学家们认为每40颗恒星中就有一颗是白矮星。可是,白矮星那么小又那么暗,所以只有离我们最近的极少数白矮星才能用望远镜观看到。