1. 伯乐范文网 > 知识库 >

平方根怎么算,怎么算平方根啊?比如26平方根

本文目录索引

1,怎么算平方根啊?比如26平方根

1、将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开,分成几段,表示所求平方根是几位数; 2、根据左边第一段里的数,求得平方根的最高位上的数; 3、从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数; 4、把求得的最高位数乘以2去试除第一个余数,所得的最大整数作为试商; 5、用商的最高位数的2倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试。 注:一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。 负数在实数系内不能开平方。只有在复数系内,负数才可以开平方。负数的平方根为一对共轭纯虚数。 扩展资料 一个数有多少个方根,这个问题既与数的所在范围有关,也与方根的次数有关。 在实数范围内,任一实数的奇数次方根有且仅有一个,例如8的3次方根为2,-8的 3次方根为-2。 正实数的偶数次方根是两个互为相反数的数,例如16的4次方根为2和-2。 负实数不存在偶数次方根。 零的任何次方根都是零。 在复数范围内,无论n是奇数或偶数,任一个非零的复数的n次方根都有n个。 参考资料来源:百度百科-开平方运算

怎么算平方根啊?比如26平方根

2,平方根计算方法

【平方根计算步骤】 将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数; 根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3); 从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256); 把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(20×3除256,所得的最大整数是 4,即试商是4); 用所求的平方根的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数); 用同样的方法,继续求平方根的其他各位上的数.  如遇开不尽的情况,可根据所要求的精确度求出它的近似值. 【开平方】   求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。在实数范围内a必须大于或等于零,即a为非负数;

3,平方根怎么算

步骤: 1、将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开,分成几段,表示所求平方根是几位数; 2、根据左边第一段里的数,求得平方根的最高位上的数; 3、从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数; 4、把求得的最高位数乘以2去试除第一个余数,所得的最大整数作为试商; 5、用商的最高位数的2倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试。 注:一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。 负数在实数系内不能开平方。只有在复数系内,负数才可以开平方。负数的平方根为一对共轭纯虚数。 例如:-1的平方根为±i,-9的平方根为±3i,其中i为虚数单位。 扩展资料如何开立方 设A = X^3,求X.称为开立方。 开立方有一个标准的公式: 例如,A=5,,即求 5介于1的3次方;至2的3次方;之间(1的3次方=1,2的3次方=8) 初始值X0可以取1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,都可以。例如我们取X0 = 1.9按照公式: 第一步:X1=1.9+(5/1.9^2;-1.9)1/3=1.7。 即5/1.9×1.9=1.3850416,1.3850416-1.9=-0.5149584,-0.5149584×1/3=-0.1716528,1.9+(-0.1716528)=1.7。即取2位数值,,即1.7。 第二步:X2=1.7+(5/1.7^2;-1.7)1/3=1.71。 即5/1.7×1.7=1.73010,1.73-1.7=0.03,0.03×1/3=0.01,1.7+0.01=1.71。取3位数,比前面多取一位数。 第三步:X3=1.71+(5/1.71^2;-1.71)1/3=1.709. 第四步:X4=1.709+(5/1.709^2;-1.709)1/3=1.7099 这种方法可以自动调节,第一步与第三步取值偏大,但是计算出来以后输出值会自动转小;第二步,第四步输入值 偏小,输出值自动转大。即5=1.7099^3; 当然初始值X0也可以取1.1,1.2,1.3,。。。1.8,1.9中的任何一个,都是X1 = 1.7 > 。当然,我们在实际中初始值最好采用中间值,即1.5。 1.5+(5/1.5²-1.5)1/3=1.7。 参考资料来源:百度百科-开平方运算

4,平方根怎么计算?

67081的平方根=259

算法1:
假设被开放数为a,如果用sqrt(a)表示根号a 那么((sqrt(x)-sqrt(a/x))^2=0的根就是sqrt(a)
变形得
sqrt(a)=(x+a/x)/2
所以你只需设置一个约等于(x+a/x)/2的初始值,代入上面公式,可以得到一个更加近似的值,再将它代入,就得到一个更加精确的值……依此方法,最后得到一个足够精度的(x+a/x)/2的值。
如:计算sqrt(5)
设初值为2
1)sqrt(5)=(2+5/2)/2=2.25
2)sqrt(5)=(2.25+5/2.25)/2=2.236111
3)sqrt(5)=(2.236111+5/2.236111)/2=2.236068
这三步所得的结果和sqrt(5)相差已经小于0.001

或者可以用二分法:
设f(x)=x^2-a
那么sqrt(a)就是f(x)=0的根。
你可以先找两个正值m,n使f(m)0
根据函数的单调性,sqrt(a)就在区间(m,n)间。
然后计算(m+n)/2,计算f((m+n)/2),如果它大于零,那么sqrt(a)就在区间(m,(m+n)/2)之间。
小于零,就在((m+n)/2,n)之间,如果等于零,那么(m+n)/2当然就是sqrt(a)。这样重复几次,你可以把sqrt(a)存在的范围一步步缩小,在最后足够精确的区间内随便取一个值,它就约等于sqrt(a)。

5,求一个数的平方根怎么算

开方的计算步骤: 1、将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数; 2、根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3); 3、从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256); 4、把求得的最高位数乘以2去试除第一个余数,所得的最大整数作为试商(2×30除256,所得的最大整数是 4,即试商是4); 5、用商的最高位数的2倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(2×30+4)×4=256,说明试商4就是平方根的第二位数); 6、用同样的方法,继续求平方根的其他各位上的数. 扩展资料: 牛顿迭代法: 上述笔算开方方法是我们大多数人上学时课本附录给出的方法,实际中运算中太麻烦了。可以采取下面办法: 比如136161这个数字,首先找到一个和136161的平方根比较接近的数,任选一个,比方说300到400间的任何一个数,这里选350,作为代表。先计算0.5(350+136161/350),结果为369.5。 再计算0.5(369.5+136161/369.5)得到369.0003,发现369.5和369.0003相差无几,并且369²末尾数字为1。有理由断定369²=136161。 一般来说,能够开方开的尽的,用上述方法算一两次基本结果就出来了。再举个例子:计算 首先发现600²<469225<700²,可以挑选650作为第一次计算的数。即算0.5(650+469225/650)得到685.9。而685附近只有685²末尾数字是5,因此685²=469225。从而 对于那些开方开不尽的数,用这种方法算两三次精度就很可观了,一般达到小数点后好几位。实际中这种算法也是计算机用于开方的算法。 参考资料来源:百度百科-开平方运算

6,如何手算求一个数的平方根

述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下:

1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11'56),分成几段,表示所求平方根是几位数;

2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);

3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);

4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除 256,所得的最大整数是 4,即试商是4);

5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);

6.用同样的方法,继续求平方根的其他各位上的数.

参考资料:http://www.tjjy.com.cn/pkuschool/teacher/its/chu2/sx/2/1.1-3.htm

7,怎样求一个数的平方根

步骤: 1、将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开,分成几段,表示所求平方根是几位数; 2、根据左边第一段里的数,求得平方根的最高位上的数; 3、从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数; 4、把求得的最高位数乘以2去试除第一个余数,所得的最大整数作为试商; 5、用商的最高位数的2倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试。 注:一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。 负数在实数系内不能开平方。只有在复数系内,负数才可以开平方。负数的平方根为一对共轭纯虚数。 例如:-1的平方根为±i,-9的平方根为±3i,其中i为虚数单位。 扩展资料如何开立方 设A = X^3,求X.称为开立方。 开立方有一个标准的公式: 例如,A=5,,即求 5介于1的3次方;至2的3次方;之间(1的3次方=1,2的3次方=8) 初始值X0可以取1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,都可以。例如我们取X0 = 1.9按照公式: 第一步:X1=1.9+(5/1.9^2;-1.9)1/3=1.7。 即5/1.9×1.9=1.3850416,1.3850416-1.9=-0.5149584,-0.5149584×1/3=-0.1716528,1.9+(-0.1716528)=1.7。即取2位数值,,即1.7。 第二步:X2=1.7+(5/1.7^2;-1.7)1/3=1.71。 即5/1.7×1.7=1.73010,1.73-1.7=0.03,0.03×1/3=0.01,1.7+0.01=1.71。取3位数,比前面多取一位数。 第三步:X3=1.71+(5/1.71^2;-1.71)1/3=1.709. 第四步:X4=1.709+(5/1.709^2;-1.709)1/3=1.7099 这种方法可以自动调节,第一步与第三步取值偏大,但是计算出来以后输出值会自动转小;第二步,第四步输入值 偏小,输出值自动转大。即5=1.7099^3; 当然初始值X0也可以取1.1,1.2,1.3,。。。1.8,1.9中的任何一个,都是X1 = 1.7 > 。当然,我们在实际中初始值最好采用中间值,即1.5。 1.5+(5/1.5²-1.5)1/3=1.7。 参考资料来源:百度百科-开平方运算