1. 伯乐范文网 > 知识库 >

鸡兔同笼方程,如何用方程解鸡兔同笼

本文目录索引

1,如何用方程解鸡兔同笼

用方程解鸡兔同笼: 设有鸡x只,则兔有(总数-x)只,因为每只兔有4只脚,每只鸡有2只脚。因此有鸡脚2x只,兔脚4(总数-x)只。 所以可以得到方程:2x+4(总数-x)=总足数。 比如:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔? 设兔有x只,则鸡有35-x只。 4x+2(35-x)=94 4x+70-2x=94 2x=24 x=12 答:兔有12只,鸡有23只。 扩展资料: 鸡兔同笼问题的规律: 1、(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数 总只数-鸡的只数=兔的只数 2、( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数 总只数-兔的只数=鸡的只数 3、总脚数÷2—总头数=兔的只数 总只数—兔的只数=鸡的只数 此题目中存在的相等关系有: 鸡头数+兔头数=总头数;鸡脚数+兔脚数=总脚数。 参考资料来源:百度百科-鸡兔同笼

如何用方程解鸡兔同笼

2,鸡兔同笼最简单的公式是什么?

兔子有几只=(总脚数-总数×鸡的脚数)÷(兔的脚数-鸡的脚数)。 较为简单的计算方式: (总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数 (94-35×2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数(23) 解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了总头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再÷2就是兔子数。 扩展资料 公式1: (兔的脚数 × 总只数 - 总脚数)÷(兔的脚数 - 鸡的脚数)= 鸡的只数 总只数 - 鸡的只数 = 兔的只数 公式2: (总脚数 - 鸡的脚数 × 总只数)÷(兔的脚数 - 鸡的脚数)= 兔的只数 总只数 - 兔的只数 = 鸡的只数

3,鸡兔同笼问题方程解法

鸡兔同笼是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的: 今有雉兔同笼,上有三十五头,下有九十四足,问雉兔几何 这四句话的意思是: 有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有多少只鸡和兔? 算这个有个最简单的算法。 (总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数 (94-35×2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数(23) 解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了总头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再÷2就是兔子数。 扩展资料鸡兔同笼的解法有假设法、公式法、方程法等几种方法。 题目示例:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有多少只鸡和兔? 1、假设法 (1)假设全是鸡:2×35=70(只) 鸡脚比总脚数少:94-70=24 (只) 兔子比鸡多的脚数:4-2=2(只) 兔子的只数:24÷2=12 (只) 鸡的只数:35-12=23(只) (2)假设全是兔子:4×35=140(只) 兔子脚比总数多:140-94=46(只) 兔子比鸡多的脚数:4-2=2(只) 鸡的只数:46÷2=23(只) 兔子的只数:35-23=12(只) 2、一元一次方程法: (1)解:设兔有x只,则鸡有(35-x)只。 4x+2(35-x)=94 解得x=12 鸡:35-12=23(只) (2)解:设鸡有x只,则兔有(35-x)只。 2x+4(35-x)=94 解得x=23 兔:35-23=12(只) 所以兔子有12只,鸡有23只。

4,鸡兔同笼解题方法,分别用方程,列表,假设法,举例怎么做

例1 笼中有若干只鸡和兔,它们共有50个头和140只脚,问鸡兔各有多少只? 解法1 假设法   假设一个未知数是已知的,比如假定50个头全是兔,则共有脚(4×50=)200(只),这与题中已知140只不符,多出(200-140=)60(只),多的原因是鸡当兔后每只鸡多算了2只脚,所以鸡的只数是(60÷2=)30(只),则兔的只数为(50-30=)20(只)。   这种解法,思路清晰,但较复杂,不便操作。能不能形象地画个图呢?让我们试试。 解法2 图形法  从图中看ACDF的面积=4×50=200(只脚),  比实际多出  GHEF的面积=200-140=60(只脚),  AB=GH=60÷2=30(只鸡),  BC=AC-AB=50-30=20(只兔) 解法2比解法1高级,算理是一样的。这里答案是图上算出的,显然这两种解法都要用纸和笔。不用纸和笔肯定是用口诀或易记的公式,这是老公公的传家宝。 解法3 公式法   老公公讲:只要用哨子一吹,并喊一声口令:“全体肃立”。这时每只鸡呈金鸡独立之状,每只兔呈玉兔拜月状,着地的脚数之和有(140÷2=)70(只),其中鸡的头数与脚数相等,由于每只兔的脚比头数多1,因此兔的头数为(70-50=)20(个),即兔有20只,则鸡有(50-20=)30(只)。这个故事实际上老公公用了如下的公式。   脚数和÷2-头数和=兔子数。   小孙子们听了兴趣为之大增,纷纷叫老公公再出几道题。老公公又出了   (1)30个头,80只脚……。(兔10,鸡20)。   (2)100只脚,40个头……。(兔10,鸡30)。   (3)80个头,200只脚……。(兔20,鸡60)   小孙子们个个都愉快地答出来了。   这个公式简洁好用,它是祖代传下来的还是老公公想出来的呢?我们中华文化博大精深,这两种可能性都是有的。这个公式是碰巧做对还是符合算理的呢?这是十分重要的。数学家高斯说过:“数学中许多方法与定理是靠归纳发现的,证明只是补行的手续而已。”现在我们就来补行这个手续。         2鸡头=鸡脚。   4兔头=兔脚。   得:兔脚+鸡脚=2鸡头+4兔头   =2(鸡头+2兔头)。

5,“鸡兔同笼”用方程怎么做?

鸡兔同笼是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:
今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
这四句话的意思是:
有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有多少只鸡和兔?
解:设x只鸡,则有(35-x)只兔,
根据题意得:2x+4(35-x)=94,
-2x=94-140,
x=23,35-x=12,
答:(略)。

6,鸡兔同笼怎么算?

鸡兔同笼解题思路:如果先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)。 扩展资料: 鸡兔同笼问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔? 解题用到方法是假设法,当某一变因素的存在形式限定在有限种可能(如某命题成立或不成立,如a与b大小:有大于 小于或等于三种情况)时,假设该因素处于某种情况(如命题成立,如a>b),并以此为条件进行推理,谓之假设法。它是科学探究中的重要思想方法,大量应用于数学、物理研究中,是一种创造性的思维活动。 参考资料来源:百度百科-鸡兔同笼

7,鸡兔同笼的问题怎么算

【鸡兔问题公式】

(1)已知总头数和总脚数,求鸡、兔各多少:

(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;

总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;

总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”

解一 (100-2×36)÷(4-2)=14(只)………兔;

36-14=22(只)……………………………鸡。

解二 (4×36-100)÷(4-2)=22(只)………鸡;

36-22=14(只)…………………………兔。

(答 略)

(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式

(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;

总头数-兔数=鸡数

或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;

总头数-鸡数=兔数。(例略)

(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;

总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;

总头数-鸡数=兔数。(例略)

(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:

(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”

解一 (4×1000-3525)÷(4+15)

=475÷19=25(个)

解二 1000-(15×1000+3525)÷(4+15)

=1000-18525÷19

=1000-975=25(个)(答略)

(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。它的解法显然可套用上述公式。)

(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:

〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;

〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”

解 〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2

=20÷2=10(只)……………………………鸡

〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2

=12÷2=6(只)…………………………兔(答略

8,鸡兔同笼问题如何用方程解

鸡兔同笼问题:
假设法:假设——计算——推理——解答
算数法:总脚数÷2—总头数=兔的只数
总只数—兔的只数=鸡的只数
口诀法:“脚半减头是兔子,头四减脚半为鸡。”意思是脚数的一半减去头数是兔子的数,头的四倍减脚的数的一半是鸡的数。
方程法:A个头,B条腿
设有鸡x只
那么兔子有
A-x只

x*2+(A-x)*4=B
还不明白就看例题:
鸡兔同笼,头9,脚30,求鸡和兔各有多少只?
设有鸡x只,那么兔子有9-x只。
2x+(9-x)*4=30
2x是用鸡的只数乘两只脚,得到鸡一共有多少只脚。
(9-x)*4是用兔子的只数乘4只脚,得到兔子一共有多少只脚。
数量关系是:鸡的总脚数+兔子的总脚数=鸡和兔共同的脚数。