幂的乘方与积的乘方,同底数幂的乘法和幂的乘方和积的乘方的区别
本文目录索引
1,同底数幂的乘法和幂的乘方和积的乘方的区别是什么?
同底数幂的乘法:既然底数相同,指数就可以相加
a^m · a^n = a^(m + n)
幂的乘方:底数不变,指数相乘
(a^n)^m = a^(mn),m个a^n相乘
(a^n)^(1/m) = a^(n/m),1/m个a^n相乘
积的乘方:
(a · b)^n = a^n · b^n
(m^a · n^b)^c = m^(ac) · n^(bc)
对于你这三题:
第一题是幂的乘方:(10^3)^5 = 10^(3 · 5) = 10^15
第二题是积的乘方:(2a)^3 = 2^3 · a^3 = 8a^3
第三题是幂的乘方与积的乘方的混合:先做积的乘方,再做幂的乘方
(x · y^2)^2
= x^2 · (y^2)^2,积的乘方:(ab)^n = a^n · b^n
= x^2 · y^4,幂的乘方:(a^m)^n = a^(mn)
2,同底数幂的乘法和幂的乘方和积的乘方的区别
同底数幂的乘法:既然底数相同,指数就可以相加
a^m · a^n = a^(m + n)
幂的乘方:底数不变,指数相乘
(a^n)^m = a^(mn),m个a^n相乘
(a^n)^(1/m) = a^(n/m),1/m个a^n相乘
积的乘方:
(a · b)^n = a^n · b^n
(m^a · n^b)^c = m^(ac) · n^(bc)
对于你这三题:
第一题是幂的乘方:(10^3)^5 = 10^(3 · 5) = 10^15
第二题是积的乘方:(2a)^3 = 2^3 · a^3 = 8a^3
第三题是幂的乘方与积的乘方的混合:先做积的乘方,再做幂的乘方
(x · y^2)^2
= x^2 · (y^2)^2,积的乘方:(ab)^n = a^n · b^n
= x^2 · y^4,幂的乘方:(a^m)^n = a^(mn)
3,幂的乘方和积的乘方的区别???
同底数幂的乘法:既然底数相同,指数就可以相加
a^m · a^n = a^(m + n)
幂的乘方:底数不变,指数相乘
(a^n)^m = a^(mn),m个a^n相乘
(a^n)^(1/m) = a^(n/m),1/m个a^n相乘
积的乘方:
(a · b)^n = a^n · b^n
(m^a · n^b)^c = m^(ac) · n^(bc)
对于你这三题:
第一题是幂的乘方:(10^3)^5 = 10^(3 · 5) = 10^15
第二题是积的乘方:(2a)^3 = 2^3 · a^3 = 8a^3
第三题是幂的乘方与积的乘方的混合:先做积的乘方,再做幂的乘方
(x · y^2)^2
= x^2 · (y^2)^2,积的乘方:(ab)^n = a^n · b^n
= x^2 · y^4,幂的乘方:(a^m)^n = a^(mn)
4,积的乘方法则与幂的乘方法则有什么不同?
幂的乘方,底数不变,指数相乘。
积的乘方,等于把积的每个因式分别乘方,再把所得的密相乘。
求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂(power)。
其中,a叫做底数(base number),n叫做指数(exponent),当aⁿ看作a的n次方的结果时,也可读作“a的n次幂”。
一个数都可以看作这个本身数的一次方。指数1通常省略不写。
运算顺序:先乘方,再括号(先小括号,再中括号,最后大括号),接乘除,尾加减。
计算一个数的小数次方,如果那个小数是有理数,就把它化为 (即分数)的形式,那么特别的,或者说,任何数的0次方等于1,0除外。
特别地,0的非正指数幂没有意义。