1. 伯乐范文网 > 知识库 >

八年级数学的思维导图)

导读:八年级上册华师版数学思维导图:实数 八年级上册华师版数学思维导图:平方根 八年级上册华师版数学思维导图:全等三角形 八年级上册华师版数学思维导图:整式的乘除 华师大八年级上册数学目录 第11章数的开方 本章综合解说 11.1平方根与立方根 11.2实数 本章大归纳 第12章整式的乘...

  数学思维导图可以帮助我们提高复习效率。下面我精心整理了八年级数学的思维导图,供大家参考,希望你们喜欢!   八年级数学的思维导图:全等三角形   八年级数学的思维导图:二次根式   八年级数学的思维导图:实数   八年级数学的思维导图:相似图形   八年级数学的思维导图因式分解   1. 因式分把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.   2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.   3.公因式的确定:系数的最大公约数?相同因式的最低次幂.   注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.   4.因式分解的公式:   (1)平方差公式: a2-b2=(a+ b)(a- b);   (2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.   5.因式分解的注意事项:   (1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字;   (2)使用因式分解公式时要特别注意公式中的字母都具有整体性;   (3)因式分解的最后结果要求分解到每一个因式都不能分解为止;   (4)因式分解的最后结果要求每一个因式的首项符号为正;   (5)因式分解的最后结果要求加以整理;   (6)因式分解的最后结果要求相同因式写成乘方的形式.   6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.   7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q是完全平方式 ? ”.   分式   1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为 的形式,如果B中含有字母,式子 叫做分式.   2.有理式:整式与分式统称有理式;即 .   3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.   4.分式的基本性质与应用:   (1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;   (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;   即   (3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.   5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.   6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.   7.分式的乘除法法则: .   8.分式的乘方: .   9.负整指数计算法则:   (1)公式: a0=1(a≠0), a-n= (a≠0);   (2)正整指数的运算法则都可用于负整指数计算;   (3)公式: , ;   (4)公式: (-1)-2=1, (-1)-3=-1.